

ALMOST ALTERNATING KNOTS PRODUCING AN ALTERNATING KNOT

SUMIKO HORIUCHI* and YOSHIYUKI OHYAMA †

Department of Mathematics, College of Arts and Sciences, Tokyo Woman's Christian University, 2-6-1, Zempukuji, Suginami-ku, Tokyo, 167-8585, Japan *horiuchi@cis.twcu.ac.jp †ohyama@lab.twcu.ac.jp

Accepted 17 February 2009

Dedicated to Professor Akio Kawauchi for his 60th birthday.

ABSTRACT

Adams *et al.* introduce the notion of almost alternating links; non-alternating links which have a projection whose one crossing change yields an alternating projection. For an alternating knot K, we consider the number $\operatorname{Alm}(K)$ of almost alternating knots which have a projection whose one crossing change yields K. We show that for any given natural number n, there is an alternating knot K with $\operatorname{Alm}(K) \geq n$.

Keywords: Almost alternating knot; alternating knot.

Mathematics Subject Classification 2010: 57M25

1. Introduction

The notion of almost alternating links is introduced by Adams *et al.* [2]. A projection of a link L is *almost alternating* if one crossing change makes the projection alternating. The crossing point on the almost alternating projection which produces an alternating projection is called the *dealternator*. A link L is *almost alternating* if L has an almost alternating projection and does not have an alternating projection. We note that an almost alternating link has infinitely many almost alternating projections by using the move at a dealternator in Fig. 1 repeatedly. Then for an almost alternating knot L, there are infinitely many alternating knots which guarantee that L is an almost alternating.

Conversely, for an alternating knot K, we consider an almost alternating knot L which has a projection whose one crossing change produces K. In the case there exists an almost alternating knot L producing an alternating knot K, if we change

Fig. 1.

the crossing corresponding to the dealternator on an alternating projection of K, we have a projection of L.

For an alternating knot K, by Alm(K), we denote the number of almost alternating knots which have a projection whose one crossing change yields K.

Since the knots whose minimum crossing numbers are less than or equal to 7 are alternating, we have Proposition 1.1.

Proposition 1.1. Let c(K) be the minimum crossing number of a knot K. If K is an alternating knot with $c(K) \leq 7$, then Alm(K) = 0.

In this paper, we show the following:

Theorem 1.2. For any given natural number n, there is an alternating knot K with $Alm(K) \ge n$.

2. Proof of Theorem 1.2

Let L_i be an alternating knot as is shown in Fig. 2 and L'_i the knot which is obtained from L_i by changing the crossing at c_i (i = 1, 2, ..., n). Let $K = L_1 \sharp L_2 \sharp \cdots \sharp L_n$ and $K_i = L_1 \sharp L_2 \sharp \cdots \sharp L'_i \sharp \cdots \sharp L_n$ (i = 1, 2, ..., n). Then, K is an alternating knot and K_i has an almost alternating projection whose one crossing change yields the alternating projection of K.

Fig. 2.

By spanning a Seifert surface according to the Seifert algorithm, we have the following $(2i + 4) \times (2i + 4)$ Seifert matrix M_i for L'_i .

$M_i =$	$ \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} $	0	$\begin{array}{c} 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ -1 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ -1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}$			0			
			()			 1 0 0 0	$\begin{array}{c} -1 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ -1 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ -1 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ -1 \end{array} $	

Then, we have

Let $\Delta_{L'_i}$ be the Alexander polynomial of L'_i . The following formulas are obtained:

$$\begin{split} \Delta_{L'_i} &= (t^2 + 1) \Delta_{L'_{i-1}} - t^2 \Delta_{L'_{i-2}}. \\ \Delta_{L'_1} &= (t^5 - 1)(t - 1) + t^3. \\ \Delta_{L'_2} &= (t^7 - 1)(t - 1) + t^3(t^2 - t + 1). \end{split}$$

By induction, it follows that

$$\Delta_{L'_i} = (t^{2i+3} - 1)(t-1) + t^3 \sum_{k=0}^{2i-2} (-t)^k$$
$$= t^{2i+4} - t^{2i+3} + t^{2i+1} - t^{2i} + \dots + t^3 - t + 1.$$
(2.1)

Murasugi [4] characterized the Alexander polynomials for alternating knots.

Theorem 2.1 [4]. For an alternating knot K, all coefficients from the lowest degree to the highest degree of Δ_K are non-zero.

From (2.1), the coefficients of t^{2i+2} and t^2 of $\Delta_{L'_i}$ are zero. Then we have Lemma 2.2.

Theorem 2.2. The knot L'_i (i = 1, 2, ..., n) is non-alternating.

Let P be the projection plane on which the projection \tilde{L} of a link L exists. Menasco [3] shows Theorem 2.3.

Theorem 2.3 [3]. Let L be a non-split alternating link. For each disc D on the projection plane P with ∂D meeting an alternating projection \tilde{L} in just two points, if $\tilde{L} \cap D$ is an embedded arc, L is prime.

By using Lemma 2.2 and Theorem 2.3, we have Lemma 2.4.

Lemma 2.4. The knot $K_i = L_1 \sharp L_2 \sharp \cdots \sharp L'_i \sharp \cdots \sharp L_n$ (i = 1, 2, ..., n) is nonalternating.

Proof. By Theorem 2.3, if K_i is a non-prime alternating knot, then there is a disc D with ∂D meeting an alternating projection \tilde{K}_i in just two points such that the interior and the exterior of D represent factor knots. And these factor knots are alternating. By Lemma 2.2, L'_i is non-alternating. Therefore, $K_i = L_1 \sharp L_2 \sharp \cdots \sharp L'_i \sharp \cdots \sharp L_n$ is non-alternating.

Lemma 2.5. The knot types $K_i = L_1 \sharp L_2 \sharp \cdots \sharp L'_i \sharp \cdots \sharp L_n$ and $K_j = L_1 \sharp L_2 \sharp \cdots \sharp L'_j \sharp \cdots \sharp L_n$ (i < j, i, j = 1, 2, ..., n) are different.

Proof. The knot K_i (i = 1, 2, ..., j - 1) has the alternating knot L_j with minimum crossing number 2j + 7 as a factor knot. However, K_j does not have L_j as a factor knot. Therefore, K_i and K_j are different knot types. Since it holds for any j(j = 2, 3, ..., n), we have Lemma 2.5.

By Lemma 2.4, each $K_i = L_1 \sharp L_2 \sharp \cdots \sharp L'_i \sharp \cdots \sharp L_n$ (i = 1, 2, ..., n) is an almost alternating knot whose one crossing change yields $K = L_1 \sharp L_2 \sharp \cdots \sharp L_n$. By Lemma 2.5, K_i and K_j $(i \neq j)$ represent different knot types. This completes the proof of Theorem 1.2.

Acknowledgment

The authors would like to thank Prof. Kouki Taniyama for his valuable suggestions.

References

[1] C. C. Adams, *The Knot Book, An Elementary Introduction to the Mathematical Theory* of *Knots* (American Mathematical Society, Providence, RI, 2004).

- [2] C. C. Adams, J. F. Brock, J. Bugbee, T. D. Comar, K. A. Faigin, A. M. Huston, A. M. Joseph and D. Pesikoff, Almost alternating links, *Topol. Appl.* 46 (1992) 151–165.
- [3] W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23(1) (1984) 37-44.
- [4] K. Murasugi, On the Alexander polynomial, Osaka Math. J. 10 (1958) 181–189.