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ABSTRACT

Adams et al. introduce the notion of almost alternating links; non-alternating links
which have a projection whose one crossing change yields an alternating projection. For
an alternating knot K, we consider the number Alm(K) of almost alternating knots
which have a projection whose one crossing change yields K. We show that for any
given natural number n, there is an alternating knot K with Alm(K) ≥ n.
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1. Introduction

The notion of almost alternating links is introduced by Adams et al. [2]. A projec-
tion of a link L is almost alternating if one crossing change makes the projection
alternating. The crossing point on the almost alternating projection which produces
an alternating projection is called the dealternator. A link L is almost alternating if
L has an almost alternating projection and does not have an alternating projection.
We note that an almost alternating link has infinitely many almost alternating pro-
jections by using the move at a dealternator in Fig. 1 repeatedly. Then for an almost
alternating knot L, there are infinitely many alternating knots which guarantee that
L is an almost alternating.

Conversely, for an alternating knot K, we consider an almost alternating knot
L which has a projection whose one crossing change produces K. In the case there
exists an almost alternating knot L producing an alternating knot K, if we change
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Fig. 1.

the crossing corresponding to the dealternator on an alternating projection of K,
we have a projection of L.

For an alternating knot K, by Alm(K), we denote the number of almost alter-
nating knots which have a projection whose one crossing change yields K.

Since the knots whose minimum crossing numbers are less than or equal to 7
are alternating, we have Proposition 1.1.

Proposition 1.1. Let c(K) be the minimum crossing number of a knot K. If K

is an alternating knot with c(K) ≤ 7, then Alm(K) = 0.

In this paper, we show the following:

Theorem 1.2. For any given natural number n, there is an alternating knot K

with Alm(K) ≥ n.

2. Proof of Theorem 1.2

Let Li be an alternating knot as is shown in Fig. 2 and L′
i the knot which is obtained

from Li by changing the crossing at ci (i = 1, 2, . . . , n). Let K = L1�L2� · · · �Ln

and Ki = L1�L2� · · · �L′
i� · · · �Ln (i = 1, 2, . . . , n). Then, K is an alternating knot

and Ki has an almost alternating projection whose one crossing change yields the
alternating projection of K.

Fig. 2.
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By spanning a Seifert surface according to the Seifert algorithm, we have the
following (2i + 4) × (2i + 4) Seifert matrix Mi for L′

i.

Mi =




−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 0 0 0
1 0 0 −1 0 0
1 0 0 0 −1 0
0 0 0 0 1 −1

0

. . .

0
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1




.

Then, we have

det(Mi − tMT
i )

=
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−1 + t 1 0 −t −t 0
−t −1 + t 1 0 0 0
0 −t −1 + t 0 0 0
1 0 0 −1 + t 0 0
1 0 0 0 −1 + t −t
0 0 0 0 1 −1 + t

0

. . .

0
−t 0 0 0

−1 + t −t 0 0
1 −1 + t −t 0
0 1 −1 + t −t
0 0 1 −1 + t

˛
˛
˛
˛
˛
˛
˛
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˛
˛
˛
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.

Let ∆L′
i
be the Alexander polynomial of L′

i. The following formulas are obtained:

∆L′
i
= (t2 + 1)∆L′

i−1
− t2∆L′

i−2
.

∆L′
1

= (t5 − 1)(t − 1) + t3.

∆L′
2

= (t7 − 1)(t − 1) + t3(t2 − t + 1).

By induction, it follows that

∆L′
i
= (t2i+3 − 1)(t − 1) + t3

2i−2∑
k=0

(−t)k

= t2i+4 − t2i+3 + t2i+1 − t2i + · · · + t3 − t + 1. (2.1)

Murasugi [4] characterized the Alexander polynomials for alternating knots.

Theorem 2.1 [4]. For an alternating knot K, all coefficients from the lowest degree
to the highest degree of ∆K are non-zero.
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From (2.1), the coefficients of t2i+2 and t2 of ∆L′
i

are zero. Then we have
Lemma 2.2.

Theorem 2.2. The knot L′
i (i = 1, 2, . . . , n) is non-alternating.

Let P be the projection plane on which the projection L̃ of a link L exists.
Menasco [3] shows Theorem 2.3.

Theorem 2.3 [3]. Let L be a non-split alternating link. For each disc D on the
projection plane P with ∂D meeting an alternating projection L̃ in just two points,
if L̃ ∩ D is an embedded arc, L is prime.

By using Lemma 2.2 and Theorem 2.3, we have Lemma 2.4.

Lemma 2.4. The knot Ki = L1�L2� · · · �L′
i� · · · �Ln (i = 1, 2, . . . , n) is non-

alternating.

Proof. By Theorem 2.3, if Ki is a non-prime alternating knot, then there is a disc D

with ∂D meeting an alternating projection K̃i in just two points such that the inte-
rior and the exterior of D represent factor knots. And these factor knots are alternat-
ing. By Lemma 2.2, L′

i is non-alternating. Therefore, Ki = L1�L2� · · · �L′
i� · · · �Ln

is non-alternating.

Lemma 2.5. The knot types Ki = L1�L2� · · · �L′
i� · · · �Ln and Kj = L1�L2� · · ·

�L′
j� · · · �Ln (i < j, i, j = 1, 2, . . . , n) are different.

Proof. The knot Ki(i = 1, 2, . . . , j−1) has the alternating knot Lj with minimum
crossing number 2j + 7 as a factor knot. However, Kj does not have Lj as a factor
knot. Therefore, Ki and Kj are different knot types. Since it holds for any j(j = 2,

3, . . . , n), we have Lemma 2.5.

By Lemma 2.4, each Ki = L1�L2� · · · �L′
i� · · · �Ln (i = 1, 2, . . . , n) is an

almost alternating knot whose one crossing change yields K = L1�L2� · · · �Ln. By
Lemma 2.5, Ki and Kj (i �= j) represent different knot types. This completes the
proof of Theorem 1.2.
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