# ALMOST ALTERNATING KNOTS PRODUCING AN ALTERNATING KNOT 

SUMIKO HORIUCHI* and YOSHIYUKI OHYAMA ${ }^{\dagger}$<br>Department of Mathematics, College of Arts and Sciences, Tokyo Woman's Christian University, 2-6-1, Zempukuji, Suginami-ku, Tokyo, 167-8585, Japan<br>*horiuchi@cis.twcu.ac.jp<br>†ohyama@lab.twcu.ac.jp

Accepted 17 February 2009
Dedicated to Professor Akio Kawauchi for his 60th birthday.


#### Abstract

Adams et al. introduce the notion of almost alternating links; non-alternating links which have a projection whose one crossing change yields an alternating projection. For an alternating knot $K$, we consider the number $\operatorname{Alm}(K)$ of almost alternating knots which have a projection whose one crossing change yields $K$. We show that for any given natural number $n$, there is an alternating knot $K$ with $\operatorname{Alm}(K) \geq n$.


Keywords: Almost alternating knot; alternating knot.
Mathematics Subject Classification 2010: 57M25

## 1. Introduction

The notion of almost alternating links is introduced by Adams et al. [2]. A projection of a link $L$ is almost alternating if one crossing change makes the projection alternating. The crossing point on the almost alternating projection which produces an alternating projection is called the dealternator. A link $L$ is almost alternating if $L$ has an almost alternating projection and does not have an alternating projection. We note that an almost alternating link has infinitely many almost alternating projections by using the move at a dealternator in Fig. 1 repeatedly. Then for an almost alternating knot $L$, there are infinitely many alternating knots which guarantee that $L$ is an almost alternating.

Conversely, for an alternating knot $K$, we consider an almost alternating knot $L$ which has a projection whose one crossing change produces $K$. In the case there exists an almost alternating knot $L$ producing an alternating knot $K$, if we change


Fig. 1.
the crossing corresponding to the dealternator on an alternating projection of $K$, we have a projection of $L$.

For an alternating knot $K$, by $\operatorname{Alm}(K)$, we denote the number of almost alternating knots which have a projection whose one crossing change yields $K$.

Since the knots whose minimum crossing numbers are less than or equal to 7 are alternating, we have Proposition 1.1.

Proposition 1.1. Let $c(K)$ be the minimum crossing number of a knot $K$. If $K$ is an alternating knot with $c(K) \leq 7$, then $\operatorname{Alm}(K)=0$.

In this paper, we show the following:
Theorem 1.2. For any given natural number n, there is an alternating knot $K$ with $\operatorname{Alm}(K) \geq n$.

## 2. Proof of Theorem 1.2

Let $L_{i}$ be an alternating knot as is shown in Fig. 2 and $L_{i}^{\prime}$ the knot which is obtained from $L_{i}$ by changing the crossing at $c_{i}(i=1,2, \ldots, n)$. Let $K=L_{1} \sharp L_{2} \sharp \cdots \sharp L_{n}$ and $K_{i}=L_{1} \sharp L_{2} \sharp \cdots \sharp L_{i}^{\prime} \sharp \cdots \sharp L_{n}(i=1,2, \ldots, n)$. Then, $K$ is an alternating knot and $K_{i}$ has an almost alternating projection whose one crossing change yields the alternating projection of $K$.


Fig. 2.

By spanning a Seifert surface according to the Seifert algorithm, we have the following $(2 i+4) \times(2 i+4)$ Seifert matrix $M_{i}$ for $L_{i}^{\prime}$.

$$
M_{i}=\left(\begin{array}{rrrrrrrrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 & & & & & & \\
0 & -1 & 1 & 0 & 0 & 0 & & & & & & \\
0 & 0 & -1 & 0 & 0 & 0 & & & & 0 & & \\
1 & 0 & 0 & -1 & 0 & 0 & & & & & \\
1 & 0 & 0 & 0 & -1 & 0 & & & & & & \\
0 & 0 & 0 & 0 & 1 & -1 & & & & & & \\
& & & & & & \cdots & & & & & \\
& & & & & & & 1 & -1 & 0 & 0 & 0 \\
& & 0 & & & & 0 & 1 & -1 & 0 & 0 \\
& & & & & & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right) .
$$

Then, we have

$$
\begin{aligned}
& \operatorname{det}\left(M_{i}-t M_{i}^{T}\right)
\end{aligned}
$$

Let $\Delta_{L_{i}^{\prime}}$ be the Alexander polynomial of $L_{i}^{\prime}$. The following formulas are obtained:

$$
\begin{aligned}
\Delta_{L_{i}^{\prime}} & =\left(t^{2}+1\right) \Delta_{L_{i-1}^{\prime}}-t^{2} \Delta_{L_{i-2}^{\prime}} \\
\Delta_{L_{1}^{\prime}} & =\left(t^{5}-1\right)(t-1)+t^{3} \\
\Delta_{L_{2}^{\prime}} & =\left(t^{7}-1\right)(t-1)+t^{3}\left(t^{2}-t+1\right)
\end{aligned}
$$

By induction, it follows that

$$
\begin{align*}
\Delta_{L_{i}^{\prime}} & =\left(t^{2 i+3}-1\right)(t-1)+t^{3} \sum_{k=0}^{2 i-2}(-t)^{k} \\
& =t^{2 i+4}-t^{2 i+3}+t^{2 i+1}-t^{2 i}+\cdots+t^{3}-t+1 . \tag{2.1}
\end{align*}
$$

Murasugi [4] characterized the Alexander polynomials for alternating knots.
Theorem 2.1 [4]. For an alternating knot $K$, all coefficients from the lowest degree to the highest degree of $\Delta_{K}$ are non-zero.

From (2.1), the coefficients of $t^{2 i+2}$ and $t^{2}$ of $\Delta_{L_{i}^{\prime}}$ are zero. Then we have Lemma 2.2.

Theorem 2.2. The knot $L_{i}^{\prime}(i=1,2, \ldots, n)$ is non-alternating.
Let $P$ be the projection plane on which the projection $\tilde{L}$ of a link $L$ exists. Menasco [3] shows Theorem 2.3.

Theorem 2.3 [3]. Let $L$ be a non-split alternating link. For each disc $D$ on the projection plane $P$ with $\partial D$ meeting an alternating projection $\tilde{L}$ in just two points, if $\tilde{L} \cap D$ is an embedded arc, $L$ is prime.

By using Lemma 2.2 and Theorem 2.3, we have Lemma 2.4.
Lemma 2.4. The knot $K_{i}=L_{1} \sharp L_{2} \sharp \cdots \sharp L_{i}^{\prime} \sharp \cdots \sharp L_{n}(i=1,2, \ldots, n)$ is nonalternating.

Proof. By Theorem 2.3, if $K_{i}$ is a non-prime alternating knot, then there is a disc $D$ with $\partial D$ meeting an alternating projection $\tilde{K}_{i}$ in just two points such that the interior and the exterior of $D$ represent factor knots. And these factor knots are alternating. By Lemma 2.2, $L_{i}^{\prime}$ is non-alternating. Therefore, $K_{i}=L_{1} \sharp L_{2} \sharp \cdots \sharp L_{i}^{\prime} \sharp \cdots \sharp L_{n}$ is non-alternating.

Lemma 2.5. The knot types $K_{i}=L_{1} \sharp L_{2} \sharp \cdots \sharp L_{i}^{\prime} \sharp \cdots \sharp L_{n}$ and $K_{j}=L_{1} \sharp L_{2} \sharp \cdots$ $\sharp L_{j}^{\prime} \sharp \cdots \sharp L_{n}(i<j, i, j=1,2, \ldots, n)$ are different.

Proof. The knot $K_{i}(i=1,2, \ldots, j-1)$ has the alternating knot $L_{j}$ with minimum crossing number $2 j+7$ as a factor knot. However, $K_{j}$ does not have $L_{j}$ as a factor knot. Therefore, $K_{i}$ and $K_{j}$ are different knot types. Since it holds for any $j(j=2$, $3, \ldots, n$ ), we have Lemma 2.5.

By Lemma 2.4, each $K_{i}=L_{1} \sharp L_{2} \sharp \cdots \sharp L_{i}^{\prime} \sharp \cdots \sharp L_{n}(i=1,2, \ldots, n)$ is an almost alternating knot whose one crossing change yields $K=L_{1} \sharp L_{2} \sharp \cdots \sharp L_{n}$. By Lemma 2.5, $K_{i}$ and $K_{j}(i \neq j)$ represent different knot types. This completes the proof of Theorem 1.2.

## Acknowledgment

The authors would like to thank Prof. Kouki Taniyama for his valuable suggestions.

## References

[1] C. C. Adams, The Knot Book, An Elementary Introduction to the Mathematical Theory of Knots (American Mathematical Society, Providence, RI, 2004).
[2] C. C. Adams, J. F. Brock, J. Bugbee, T. D. Comar, K. A. Faigin, A. M. Huston, A. M. Joseph and D. Pesikoff, Almost alternating links, Topol. Appl. 46 (1992) 151-165.
[3] W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23(1) (1984) 37-44.
[4] K. Murasugi, On the Alexander polynomial, Osaka Math. J. 10 (1958) 181-189.

